CVE-2024-26960

NameCVE-2024-26960
DescriptionIn the Linux kernel, the following vulnerability has been resolved: mm: swap: fix race between free_swap_and_cache() and swapoff() There was previously a theoretical window where swapoff() could run and teardown a swap_info_struct while a call to free_swap_and_cache() was running in another thread. This could cause, amongst other bad possibilities, swap_page_trans_huge_swapped() (called by free_swap_and_cache()) to access the freed memory for swap_map. This is a theoretical problem and I haven't been able to provoke it from a test case. But there has been agreement based on code review that this is possible (see link below). Fix it by using get_swap_device()/put_swap_device(), which will stall swapoff(). There was an extra check in _swap_info_get() to confirm that the swap entry was not free. This isn't present in get_swap_device() because it doesn't make sense in general due to the race between getting the reference and swapoff. So I've added an equivalent check directly in free_swap_and_cache(). Details of how to provoke one possible issue (thanks to David Hildenbrand for deriving this): --8<----- __swap_entry_free() might be the last user and result in "count == SWAP_HAS_CACHE". swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0. So the question is: could someone reclaim the folio and turn si->inuse_pages==0, before we completed swap_page_trans_huge_swapped(). Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are still references by swap entries. Process 1 still references subpage 0 via swap entry. Process 2 still references subpage 1 via swap entry. Process 1 quits. Calls free_swap_and_cache(). -> count == SWAP_HAS_CACHE [then, preempted in the hypervisor etc.] Process 2 quits. Calls free_swap_and_cache(). -> count == SWAP_HAS_CACHE Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls __try_to_reclaim_swap(). __try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()-> put_swap_folio()->free_swap_slot()->swapcache_free_entries()-> swap_entry_free()->swap_range_free()-> ... WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); What stops swapoff to succeed after process 2 reclaimed the swap cache but before process1 finished its call to swap_page_trans_huge_swapped()? --8<-----
SourceCVE (at NVD; CERT, LWN, oss-sec, fulldisc, Red Hat, Ubuntu, Gentoo, SUSE bugzilla/CVE, GitHub advisories/code/issues, web search, more)
ReferencesDLA-3842-1, DSA-5681-1

Vulnerable and fixed packages

The table below lists information on source packages.

Source PackageReleaseVersionStatus
linux (PTS)bullseye5.10.223-1fixed
bullseye (security)5.10.226-1fixed
bookworm6.1.115-1fixed
bookworm (security)6.1.112-1fixed
trixie6.11.7-1fixed
sid6.11.9-1fixed

The information below is based on the following data on fixed versions.

PackageTypeReleaseFixed VersionUrgencyOriginDebian Bugs
linuxsourcebullseye5.10.216-1DSA-5681-1
linuxsourcebookworm6.1.85-1
linuxsource(unstable)6.7.12-1
linux-5.10sourcebuster5.10.216-1~deb10u1DLA-3842-1

Notes

https://git.kernel.org/linus/82b1c07a0af603e3c47b906c8e991dc96f01688e (6.9-rc1)

Search for package or bug name: Reporting problems